倒数教学设计
作为一名专为他人授业解惑的人民教师,通常会被要求编写教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。我们应该怎么写教学设计呢?以下是小编为大家收集的倒数教学设计,仅供参考,希望能够帮助到大家。
倒数教学设计1一、创设情境、导入新课。
1、课件出示:吞---吴干---士杏---呆。
2、请同桌互相交流一下,找一找下面文字的构成有什么规律吗?
3、学生汇报。
4、同学们观察的非常仔细,这种现象在数学中也有,今天这堂课我们就来研究倒数的知识。(板书课题:倒数的认识)
二、出示学习目标
1、能够理解和掌握倒数的意义。
2、学习求一个数的倒数的方法,能正确地求出一个数的倒数。
三、探究新知识
1、课件出示例1的算式,开展小组活动:算一算,找一找,这组算式有什么特点?
2、小组汇报交流。(通过计算,发现每组两个数的乘积都是1,还发现了相乘的两个分数的分子和分母的位置是颠倒的)
3、同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,也发现了每组两个数的乘积都是1,我们现在就可以得出倒数的定义了:乘积是1的两个数互为倒数。(板书)
4、提问“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。
5、强调“两个数”“乘积是1”
6、出示0.4×2.5=1,让学生说一说0.4和2.5可不可以说互为倒数。
7、随堂练习:判断:
(1)得数是1的两个数叫做互为倒数。
(2)因为10×1/10=1,所以10是倒数,1/10是倒数。
(3)因为1/4+3/4=1,所以1/4是3/4的倒数。
8、出示例题2,找一找哪两个数互为倒数?再说一说你是怎么找的?
9、以小组为单位进行讨论交流。
10、分组汇报:
第一种方法:看两个分数的乘积是不是1。
第二种方法:看两个分数的分子与分母是否分别颠倒了位置。
哪一种方法比较快?
11、观察书中的找倒数的方法,强调:3/5的倒数是5/3,不能用等号相连。
我们刚才知道了真分数、假分数和整数找倒数的方法:还有一些数找倒数的方法我们没有归纳。请同学们想一想下面的数怎么找倒数?
1、真分数、假分数。
2、整数
3、小数
4、带分数(板书)
12、例2中还有哪些数没有找到倒数?
13、提问:1和0有没有倒数?如果有,是多少?(小组讨论、汇报。)
四、巩固练习
我们现在应用今天学习的知识解决一些问题。
五、课堂总结。
板书设计成知识树。
倒数教学设计2学习目标:
1、理解倒数的意义,掌握求一个数倒数的方法,能准确熟练地写出一个数的倒数。
2、通过独立思考、小组合作、展示质疑,在探索活动中,培养观察、归纳、推理和概括能力。
3、激情投入,挑战自我。
教学重点:
求一个数倒数的方法。
教学难点:
1和0倒数的问题。
教学过程:
离上课还有一点时间,咱们先聊一会吧。同学们,我给你们代数学课多长时间了?(一年)一年时间虽然不是很长,但我觉得我们之间已经互相成为了朋友,你有这种感觉吗?该怎样表述我们之间的朋友关系呢?(你是我的朋友,我是你的朋友,互相应该是双方面的。)就先聊到这儿吧?好,上课!
一、导入:
同学们,在上数学课之前,老师想考你们一个语文知识,怎么样?(出示“杏”和“呆”)看到这两个字,你发现了什么?
生:上下两部分调换了位置,变成了另一个字。
师:对了,把其中任一个字上下两部分倒过来,就变成了另一个字,这个现象很有趣很奇妙吧!
师小结:这种奇妙有趣的现象不仅出现在语文中,其实在数学中也存在着,想了解吗?今天我们就一起揭秘这种现象,好吧?
二、合作探究:
(一)揭示倒数的意义
1.(出示例题课件)请看大屏幕,先计算,再观察这些算式,同桌互相说一说它们有什么规律?(学生自学,经历自主探索总结的过程,并独立完成)。
请同学们按照要求逐一完成,看谁是认真仔细的人,既能准确的计算,又能发现其中的秘密。
师:同学们,在以前我们看来非常简单的乘积是1的两个数,研究起来有如此大的发现,那么,像符合这种规律的两个数叫什么数呢?谁能给这种数取个名字?(生取名字)
师:那么根据刚才的计算结果与发现的规律你能说出什么叫倒数吗?(生答)
师板书:乘积是1的两个数互为倒数。
你认为哪些字或词比较重要?你是如何理解“互为”的?你能用举例子的方法来说明吗?(生答)
师小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。就像课前我们聊得话题,老师和你互相成为了好朋友,就是说“老师是你的朋友”,“你是老师的朋友”,我们俩是双方面的。
(二)小组探究求一个倒数的方法
1.出示例题2课件:下面哪两个数互为倒数?
师:同学们知道了什么是倒数,那你能找出一个数的倒数吗?那好,请完成这道题。
出示课件,请看这里,哪两个数互为倒数?(生找)(生说教师演示)
提问:你用什么好办法这么快就找出了这三组数的倒数?(同桌互相说说看)(找几名学生汇报)
师板书:求倒数的方法:分数的分子、分母交换位置。
同学们想出了找倒数的好方法,那就是分数的分子、分母交换位置,你们把老师想说的都说出来了,太棒了!我们一起来看一看(出示课件)。在这三组数里哪一组不同于其它两组?对,6是整数,像6这样的整数找倒数的方法可以先把整数写成分母是1的分数,再找倒数。
2.师提问:再次出示连线题的课件,本题中的还有哪些数据没有找到倒数?它们有没有倒数?如果有,又是多少呢?同桌讨论说说你的发现。
3.出示课件想一想。
我的发现:1的倒数是(1),0(没有)倒数。
师提问:(1)为什么1的倒数是1?
生答:(因为1×1=1“根据乘积是1的两个数互为倒数”,所以1的倒数是1)
(2)为什么0没有倒数?
生答:(因为0与任何数相乘都等于0,而不等于1,所以0没有倒数)
4.探讨带分数、小数的倒数的求法
师:看来像这样的分数 ……此处隐藏12142个字……趣和良好的学习习惯。
教学重点、难点:
重点:发现倒数的特征,理解倒数的意义
难点:求一个数的倒数的方法
教学过程:
一、 比赛引入
师:同学们,前面我们学习了分数的乘法,今天老师给出一些乘法算式,比一比谁能最先发现这组算式的秘密。
(拿出课堂作业本帮助你)
2/3×3/2 2×1/2
8/11×11/8 1/10×10
7/9×9/7 7×1/7
(师巡视学生的情况,并对分数的格式加以指导)
学生思考后,汇报结果:
生1:两个乘数的分子、分母位置颠倒
生2:每个算式乘积是1
师:现在老师有点疑问,2不是分数,它的分子和分母是什么呢?
生:2可以写成2/1,分子分母颠倒后,2/1×1/2=1
二、 理解倒数的意义
师:观察的真仔细,我们能不能给这样的数取个名字呀?
生:倒数
师:对,这就是我们今天要研究的课题:倒数(板书)
师:再看这几个算式,2×1/2=1,我们说:2是1/2的倒数,1/2是2的倒数
师:看这几个算式,倒数是对几个数来说的?
生:两个数(师板书)
师:这两个数的乘积有什么特点?
生:乘积是1(师板书)
师:再举一个例子:2/3×3/2=1,我们说:2/3是3/2的倒数,3/2是2/3的倒数,2/3和3/2互为倒数(师板书:互为倒数)
师:怎么理解“互为”呢?
生:相互的意思
生:就是对两个数而言的
师:“互为”是对两个数而说的,不能孤立地说谁是倒数,应该说谁是谁的倒数。
师:你能说说黑板上其他例子谁和谁互为倒数吗?和你的同桌说一说
师:除了这几个例子,能写出其他乘积是1的算式吗?
师:大家表现真好,老师也来说一个,3/5是倒数,对吗?
生:不对
师:你帮老师改正吧
生1:应该说3/5是5/3的倒数
三、 研究求一个数的倒数的方法
师:我们已经了解了倒数,现在我们就帮这些数找一下他们的倒数朋友吧! (师读生写)
3/2 7/9 15 1 0
把他们的倒数朋友写在作业本上。(师巡视,找两名学生板演)
师:这么快,你们是怎样找到这些数的倒数的?
生:分子分母交换位置(师板书找倒数的方法)
师:15是整数,怎么办?
生:15=15/1,分子分母交换位置,就是1/15
师:1呢?
生:1=1/1,所以1的倒数还是1(师板书)
师:0有倒数吗?(出现2种答案,小组讨论,师巡视)
师:讨论完了,那0到底有没有倒数呢?
生:没有
师:理由呢?
生:0不能做分母,0乘任何数都得0(师板书)
师:找一个数(0除外)的倒数的方法,就是分子和分母交换位置(板书)
四、 总结收获、巩固练习
师:大家会找倒数,现在请你做主考官,你说一个数,找一个同学说它的倒数
师:大家掌握这么好,总结一下学的知识吧。
师:想不想再挑战一下
生:没问题
师:好,那就带着这份自信认真完成,做完小学数学作业本第11页
五、 拓展、提高(由于练习时间长,这个环节课后做了补充)
师:老师这有2个疑问,能不能帮助老师呀?帮老师求他们的倒数,老师出示小数和带分数
课后反思:
本节课是北师大版五年级下册第三单元的内容《倒数》,对倒数的认识,学生印象深的是“分子与分母颠倒了位置”而不是倒数的本质内涵“两数乘积为1”。所以在课堂学习时,我从分数的倒数引入,学生体会到分数的倒数外在表现形式确实是将分子与分母交换了位置,然后提问乘积有什么特点?让学生理解若互为倒数的两个数,乘积是1。
对“互为”一词的理解,我没有花很多的时间,因为学生在学习“倍数”概念时,已经接触“互为并不是指一个数,而是两数之间的关系”这种情况,当时花了很多的时间练习谁和谁互为倒数,目的是让学生体会,进而理解。
然后提问:整数没有分子和分母,那么整数是否有倒数呢?如果有的话,你能举例说明吗?在学生掌握总结出求整数的倒数的方法后,再提出两个特殊的整数的倒数的研究,通过集体讨论,加深了学生对“1”和“0”倒数的认识。同时也将倒数的认识引向本质内涵:两数乘积为1。
在本节课也有一些不足:让学生讨论过多,求倒数的方法,我只是口述,应该板书,效果会更好;还有就是时间没有掌握好,本打算练习后讲小数、带分数的倒数的求法,但由于时间没有分配好,最后没有提及,课后才进行补充。
倒数教学设计15教学目标:
1、通过观察、比较、概括、抽象,从本质上理解倒数的意义,并能正确地求一个数的倒数。
2、培养学生的数学思维。
教学重点:
理解倒数的意义,求一个数的倒数。
教学难点:
从本质上理解倒数的意义。
教学过程:
一、呈现数据,先计算,再观察发现。
1、出示:3/8×8/3 7/15×15/7 5×1/5 0.25×4
2、计算后,这些数据你发现有什么规律?(学生先独立思考,然后组内交流)
二、交流思辨,抽象概念。
1、汇报。乘积都是1。
2、你能根据上面的观察写出乘积是1的另一个数吗?
3/4×( )=1 ( )×9/7=1
说说你是怎样写得,有什么窍门?
你还能写出像这样乘积是1的两个数吗?不过要写得与众不同!(鼓励学生写出整数、小数) 你是怎样想的?
如0.5、1.7 3、抽象概念,乘积是1的两个数,互为倒数。可以说谁和谁是互为倒数,也可以说谁是谁的倒数。
4、让学生说说上面的数(用两种说法)。
5、是互为倒数的它们的积是1,这两个数有特点吗?仔细观察这些数。
学生讨论:分数的分子分母调了一下位置;
师:那么5×1/5 0.2×5乘积也是1哟!怎么?把整数和小数也化成分数。
6、沟通:分子分母倒一下跟乘积是1有联系吗?
7、现在你对倒数有了怎样的认识?
三、求一个数的倒数。
1、找一个数的倒数。
5/11的倒数是( ),( )的倒数是4/7,( )和15是互为倒数。
你是怎样找一个数的倒数的?说说你的方法。(从倒数的意义和现象)
2、会找了吗?你能找到下列数的倒数吗?
3/5 4/9 6 7/2 1 1.25 1.2 0
学生独立完成,然后交流。