当前位置:首页 > 教学范文 > 说课稿

等腰三角形性质说课稿

时间:2024-07-16 10:46:50
等腰三角形性质说课稿

等腰三角形性质说课稿

在教学工作者实际的教学活动中,总不可避免地需要编写说课稿,说课稿有助于提高教师理论素养和驾驭教材的能力。怎么样才能写出优秀的说课稿呢?下面是小编整理的等腰三角形性质说课稿,欢迎阅读,希望大家能够喜欢。

等腰三角形性质说课稿1

一、教材分析

1.教材的地位与作用:

等腰三角形的性质是新人教版八年级数学第十三章第三节的内容,它是在认识了轴对称性质以及了解了全等三角形的判定的基础上进行的。主要学习等腰三角形的"等边对等角"和"等腰三角形的三线合一"本节内容既是前面知识的深化和应用,又是今后学习等边三角形的预备知识,还是今后证明角相等、线段相等及两直线互相垂直的依据,因此本节课具有承上启下的重要作用。

2.教学目标:

知识目标:了解等腰三角形的性质,会利用等腰三角形的性质,进行简单的推理、判断、计算作用。

能力目标:从设置问题?模型演示?自己动手探究发现等腰三角形的性质,培养学生的观察力、实验推理能力。

情感目标:要求学生在学习中运用发现法,体验几何发现的乐趣,在实际操作动手中感受几何应用美。

3.教学重点与难点

重点:等腰三角形两底角相等,等腰三角形三线合一。因为等腰三角形的性质是今后学习线段垂直平分线的基础,也是今后论证角、边相等的重要依据,所以是本节教学的重点。

难点:等腰三角形三线合一的推理应用

二、教法与学法

教法:我采用探索发现法完成本节的教学,在教学中以学生参与为主,便于激发学生学习热情,体验成功的喜悦,通过直观的演示和学生自己动手使学生在获得感性知识的同时,为掌握理性知识创造条件,这样更有利于调动学生积极性,激发学生兴趣,使学生变被动学习为积极主动愉快学习,也符合数学教学的直观性和可接受性。

学法:在教学中,把重点放在学生如何学这一方面,我认为通过直观演示,得到感性认识,学生在学习中运用发现法,开拓自己的创造性思维,实现由学生自己发现感受"等腰三角形的性质"通过学生自己看、想、议、练等活动,让学生自己主动"发现"几何图形的性质,而不是老师灌输几何图形的性质,这样做有利于活跃学生的思维,帮助他们探本求源,让每位学生都学有价值的数学。

三、教学过程:

(一)出示教学目标

知识目标:了解等腰三角形的性质,会利用等腰三角形的性质,进行简单的推理、判断、计算作用。

能力目标:从设置问题?模型演示?自己动手探究发现等腰三角形的性质,培养学生的观察力、实验推理能力。

情感目标:要求学生在学习中运用发现法,体验几何发现的乐趣,在实际操作动手中感受几何应用美。

让学生明白本节课的重要知识点和自己需要掌握的主要知识,做到有的放矢。

(二)直观演示,大胆猜想

观察含有等腰三角形图片,让学生从感性上认识等腰三角形,激发学生的兴趣。

由学生自己动手折纸游戏,演示等腰三角形轴对称变换,大胆猜测等腰三角形的性质,这种直观的低起点的方式引入新课更能提高学生兴趣,激发他们的求知欲,让每位学生都涌跃参与,领悟数学学习的价值。

(二)证明猜想,形成定理。

1△ABC中,AB=AC,求证:∠B=∠C

思考:1如何证明你的猜想?〔讲述一种证明方法:作顶角的平分线〕

2有其它的方法吗?试试看,用不同的方法证明这个结论。

让学生4人一组分组合作,在组与组之间合作,通过作辅助线,共同寻找全等三角形,相等的角,相等的边,体现学生组内合作,组与组之间的合作,让学生自己主动证明猜想,同时有也有利于学生对全等三角形的判定的巩固,既运用以旧引新的推理方式,又体现由特殊到一般的思维认识规律。采用这种探索发现的方式,让学生通过对直观图形的观察猜想,实验证明去揭示定理。同时也展示了猜想--证明这一数学认知基本方法。

2交流反馈,共同完成本节重要知识点的证明。

通过看幻灯片,让学生感性上认识等腰三角形性质〔等腰三角形三线合一〕,既锻炼学生的发散思维能力,又可提高学生的表述水平。

3小结:根据等腰三角形的性质填空。

(1)如果AB=ACAD是角的平分线那么......

(2)如果AB=ACAD⊥BC那么......

(3)如果AB=ACBD=CD那么......

总结,积累知识点,从理性上认识等腰三角形的性质,形成知识体系。

(三)应用举例,强化训练

为进一步深化巩固对新知识的理解,使新知识转化成技能,在教学中我遵循由线入深,循序渐进的原则安排以下练习,以求完成教学目标。

通过这一环节的题目训练,有利于激发学生探索精神,养成灵活运用新知识,敢干运用新知的跳跃精神。

四、归纳小结

为了使学生对所学知识有一个完整而深刻系统的认识,我让学生畅所欲言,谈体会、谈收获,让学生自己结合本节教学目标,发现在学习中学会了什么及还存在哪些问题。这样有利于学生学习后养成及时反思的习惯。

等腰三角形的性质教学反思

安排一课时学习等腰三角形的性质,内容很多,课堂容量很大,本课教学后,有很多方面需要总结。

在证明性质时,不再有同学直接用性质证明性质了,这是一个很大的进步,用三种方法研究性质的证明,要用到小组交流,比较发现有三种方法:取中点,用“SSS”证明全等;作垂线,用“HL”证明全等;作角平分线,用“SAS”证明全等。通过这样的教学设计,一方面,体会了辅助线不同的作法,就有不同的证法;另一方面,为性质2“三线合一”的教学提供了方便。不足的是,课堂交流的面可以更宽些。

性质2的应用比较多,初学者往往不能灵活应用这条性质优化证题途径,因此要解读这条性质,由图形训练和规范符号语言,把性质一句话改写成三句话或者六句话,一句话是“等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合”,三句话是“1等腰三角形的顶角平分线平分底边、垂直于底边,2等腰三角形的底边上的中线平分顶角、垂直于底边,3等腰三角形的底边上的高平分顶角、平分底边”,六句话是“1等腰三角形的顶角平分线平分底边,2等腰三角形的顶角平分线垂直于底边,3等腰三角形的底边上的中线平分顶角,4等腰三角形的底边上的中线垂直于底边,5等腰三角形的底边上的高平分顶角,6等腰三角形的底边上的高平分底边”,结合图形概括起来就是:在△ABC中,AB=AC,下列论断①∠BAD=∠CAD,②BD=CD,③AD⊥BC中,有一条成立,另外两条就成立,分六句话,写出推理语言。这里设计了一组填空题,有利于性质2的应用。学生能够整齐地叙述,但还需进一步巩固 ……此处隐藏19102个字……>例一:1、在等腰△ABC中,AB=3,AC=4,则△ABC的周长=________

2、在等腰△ABC中,AB=3,AC=7,则△ABC的周长=________

此例题的重点是运用等腰三角形的定义,以及等腰三角形腰和底边的关系,仔细比较以上两个例题,并强调在没有明确腰和底边之前,应该分两种情况讨论。而且在讨论后还应该思考一个问题,就是这样的三条边能否够成三角形。

例二:1、在等腰△ABC中,AB=AC,∠A=50°,则∠B=_____,∠C=______

2、在等腰△ABC中,∠A=100°,则∠B=______,∠C=______

此例题的重点是运用等腰三角形“等边对等角”这一性质,突出顶角和底角的关系,强调等腰三角形中顶角和底角的取值范围:0°<顶角<180°,0°<底角<90°。仔细比较以上两个例题,得出结论一个经验:在等腰三角形中,已知一个角就可以求出另外两个角。

例三:在等腰△ABC中,∠A=40°,则∠B=______

此题是一道陷阱题,可以先让学生进行分析,和例二的2小题比较,估计会出一些状况,大多数学生会按照两种情况讨论,得到两个答案。然后跟学生画出图形进行分析,分两种情况讨论,但是答案是“三个”。强调需要自己画图解题时,一定要三思而后行!

例四:在△ABC中,AB=AC,点D是BC的中点,∠B=40°,求∠BAD的度数?

此题的目的在于等腰三角形“等边对等角”和“三线合一”性质的综合运用,以及怎么书写解答题,强调“三线合一”的表达过程。

解:在△ABC中,

∵AB=AC,∠B=40°,∴∠B=∠C=40°

又∵∠A+∠B+∠C=180°,∴∠A=100°

在△ABC中,AB=AC,点D是BC的中点,

∴AD是底边上的中线根据等腰三角形“三线合一”知:

AD是∠BAC的平分线,即∠BAD=∠CAD=50°

四、练习部分:

练功房Ⅰ(基础知识)填空题

1、在△ABC中,若AB=AC,若顶角为80°,则底角的外角为_________.

2、在△ABC中,若AB=AC,∠B=∠A,则∠C=____________.

3、在△ABC中,若AB=AC,∠B的余角为25°,则∠A=____________.

4、已知:如图,在△ABC中,D是AB边上的一点,AD=DC,∠B=35°,

∠ACD=43°,则∠BCD=____________

开展小组竞赛,比一比那个小组算的又快又准!

练功房Ⅱ(实践运用)实践题

如图,是西安半坡博物馆屋顶的截面图,已经知道它的两边AB和AC是相等的建筑工人师傅对这个建筑物做出了两个判断:

①工人师傅在测量了∠B为37°以后,并没有测量∠C,就说∠C的度数也是37°。

②工人师傅要加固屋顶,他们通过测量找到了横梁BC的中点D,然后在AD两点之间钉上一根木桩,他们认为木桩是垂直横梁的。

请同学们想想,工人师傅的说法对吗?请说明理由。

练功房Ⅲ(思维发散)选做题

已知:如图,在△ABC中,AB=AC,E在AC上,D在BA的延长线上,AD=AE,连结DE。请问:DE⊥BC成立吗?

五.小结部分

提问:今天我们学习了什么?你觉得在等腰三角形的学习中要注意哪些问题?

1、等腰三角形是轴对称图形,等腰三角形的定义,以及相关概念。

2、等腰三角形的两底角相等。(简写成“等边对等角”)

3、等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合。

(简称“三线合一”)

4、注意等腰三角形关于底和腰的计算题,特别是需要的讨论的时候,最后还要进行

检验,看看这样的三条边是否可以构成三角形。

5、注意等腰三角形的顶角和底角的取值范围:0°<顶角<180°,0°<底角<90°

6、重视需要自己画图解题时一定要“三思而后行”!

六.作业部分

1、教科书P86习题9.31,2,3,4题

2、请问:在等腰三角形中,等腰三角形两腰上的中线(高线)是否相等?

为什么?

3、等腰三角形是特殊的三角形,思考一下,什么三角形又是特殊的等腰三角

形呢?带着问题预习教科书P83—84。

七、板书设计

八、教学说明

本节课的设计力求体现使学生“学会学习,为终身学习做准备”的理念,努力实现学生的主体地位,使数学教学成为一种过程教学,让学生在活动中获得知识、形成技能和能力;在教学中注意教师角色的转变,教师是组织者、参与者、合作者,教师的责任是为学生创造一种宽松、和谐、适合发展的学习环境,创设一种有利于思考、讨论、探索的学习氛围。在教法上采用启发探索式教学模式,整堂课以问题为思维主线,引导学生通过观察,自主探索,使学生观察、主动思考,充分体验探索的快乐和成功的乐趣,并充分利用计算机辅助教学,以加强感性认识并培养学生用运动联系的观点观察现象、解决问题。整个教学环节层层推进、步步深入,融基础性、灵活性、实践性、开放性于一体,注重调动学生思维的积极性,把知识的形成过程转化为学生亲自观察、实验、发现、探索、运用的过程。使学生在获得知识的同时提高兴趣、增强信心、提高能力。本课就教学过程作以下几点说明:

1、知识结构安排:

本课以“问题情境--------获取新知--------应用与拓展”的模式展开,符合初一学生的认知规律。

2、教学反馈与评价:

本课从学生回答问题,练习情况等方面反馈学生对知识的理解、运用,教师根据反馈信息适时点拨;同时从新课标评价理念出发,抓住学生语言、思想、动手能力方面的亮点给予表扬,不足的方面给予帮助、指导和恰如其分的鼓励,形成发展性评价,提高学生学数学,用数学的信心。

3、对于本节的几点思考

①本节的学习任务比较重要,有等腰三角形性质的推导、性质的应用,所

以本人针对学生的特点,在课例的掌握好的情况下,让学生自己去发现、去联想,

能充分地发挥学生主观能动性。

②通过学生自己动手实验得到等腰三角形性质的内容,可以使他们比较好的掌握知识、提高学习数学的兴趣,达到了事半功倍之效。

③在整个教学过程中,本人利用多种教学方法,使学生在实验中提出问题,解决问题的途径,而不知不觉地进入学习氛围,把学生从被动学习步入主动想学的习惯。

总之,在本节教学中,我始终坚持以学生为主体,教师为主导,师生互动,生生互动,致力启用学生已掌握的知识,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中,在整个教学过程中我以启发学生,挖掘学生潜力,让他们展开联想的思维,培养其能力为主旨而发展。

《等腰三角形性质说课稿.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

上一篇:灰雀说课稿 下一篇:运算定律说课稿